


The protein fibroin can be broken down into amino acids using an enzyme.

(a) A student uses thin-layer chromatography (TLC) to identify these amino acids.

The student identifies two of the amino acids as alanine and serine.

Use the figure below to calculate the R_f value of the unknown amino acid. Show your working.

Use your R_f value and the table below to identify the unknown amino acid.

Amino acid	R_f value
tyrosine	0.25
glycine	0.34
valine	0.64
leucine	0.73

R_f value _____

Identity _____

(b) The amino acids cannot be seen as they move during the experiment.

State how the amino acids can be made visible at the end of the experiment.

(1)

(c) State why each amino acid has a different R_f value.

(1)

(a) **M1** $\frac{27}{80} = 0.34$

1

M2 glycine

*M1 some relevant working is needed to arrive at 0.325 - 0.35
no ECF based on M1*

1

(b) use uv lamp or ninhydrin

allow developing / locating agent / iodine

1

(c) each amino acid has different (relative) affinity/attraction to/solubility in stationary and mobile phases

allow reference to different solubility in solvent OR different affinity for stationary phase

1