

This question is about simple test-tube reactions to identify organic liquids.

(a) Silver nitrate solution can be used to distinguish between propanoyl chloride and 1-chloropropane.

Give the observations you would expect when a few drops of silver nitrate solution are added to separate samples of propanoyl chloride and 1-chloropropane.

Observation with propanoyl chloride \_\_\_\_\_

Observation with 1-chloropropane \_\_\_\_\_

(2)

(b) Three unlabelled bottles are known to contain either propan-1-ol, propanal, or propanone.

A sample of each liquid is warmed with a few drops of Fehling's solution.

Identify the liquid that reacts with Fehling's solution and give the expected observation.

Suggest a further simple test-tube reaction that can be used to distinguish between the remaining two liquids.

Give the expected observation with the liquid that reacts.

Liquid that reacts with Fehling's solution \_\_\_\_\_

Observation \_\_\_\_\_

Further test \_\_\_\_\_

Observation \_\_\_\_\_

(3)

(a) **M1** Misty / white / steamy fumes

*M1 (immediate) White precipitate forms*

**M2** No visible change

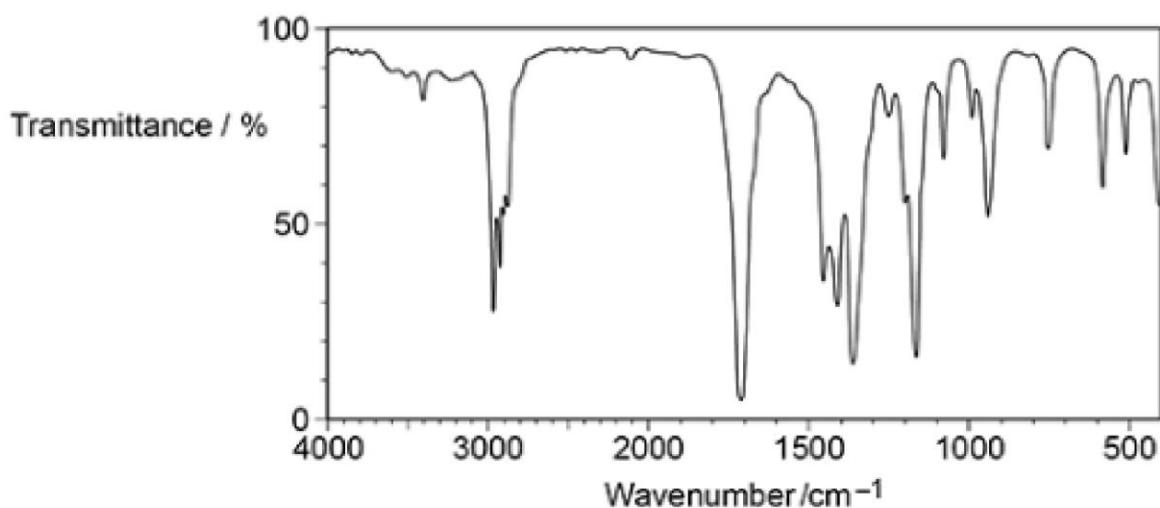
*M2 White precipitate forms slowly*

2

(b) **M1** Propanal AND (blue solution gives a brick) red precipitate

If **M1** incorrect, allow ECF for suitable tests on remaining liquids

|    |                                                      |                                       |                                                       |                                                           |
|----|------------------------------------------------------|---------------------------------------|-------------------------------------------------------|-----------------------------------------------------------|
| M1 | (Warm with) acidified potassium dichromate (VI)      | add Na                                | warm with a named carboxylic acid with conc $H_2SO_4$ | (Warm with) acidified potassium manganate (VII)           |
| M2 | Propan-1-ol/alcohol AND (orange solution) goes green | Propan-1-ol/alcohol AND effervescence | Propan-1-ol/alcohol AND fruity smell                  | Propan-1-ol/alcohol AND (purple solution) goes colourless |


3

This question is about spectroscopy.

(a) Compound **K** has molecular formula  $C_4H_8O$

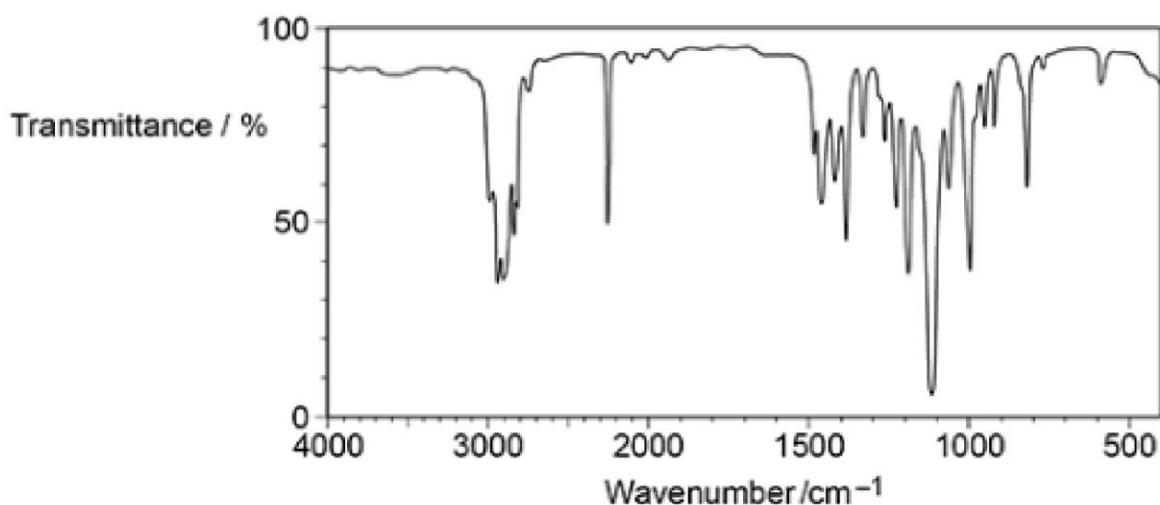
**Figure 1** shows the infrared spectrum of **K**.

**Figure 1**



Which functional group does **K** contain?

Tick (✓) one box.


| Functional Group |        |       |          |         |
|------------------|--------|-------|----------|---------|
| alcohol          | alkene | amine | carbonyl | nitrile |
|                  |        |       |          |         |

(1)

(b) Compound **L** has molecular formula  $C_4H_7NO$

**Figure 2** shows the infrared spectrum of **L**.

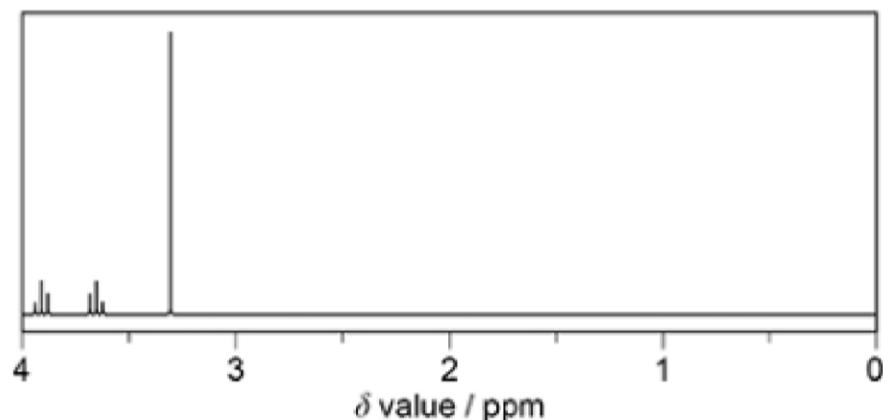
**Figure 2**



**L** reacts with  $\text{H}_2$  in the presence of a nickel catalyst to give compound **M**.

Suggest **three** ways in which the infrared spectrum of **M** is different from the infrared spectrum of **L**.

1 \_\_\_\_\_


2 \_\_\_\_\_

3 \_\_\_\_\_

(3)

(c) **Figure 3** shows the  $^1\text{H}$  NMR spectrum of **Q**,  $\text{C}_3\text{H}_7\text{ClO}$

**Figure 3**



The table below shows the chemical shifts ( $\delta$  values) and integration values for each peak.

|                          |      |      |      |
|--------------------------|------|------|------|
| <b>δ value / ppm</b>     | 3.95 | 3.65 | 3.35 |
| <b>Integration value</b> | 0.6  | 0.6  | 0.9  |

Deduce the structure of **Q**.

Explain your answer.

---



---



---



---



---



---

(a) Tick in carbonyl box only

1

(b) Peak at 2220-2260  $\text{cm}^{-1}$  (for  $\text{C}\equiv\text{N}$ ) disappears*If both  $\text{C}\equiv\text{N}$  disappears and  $\text{N-H}$  appears without wavenumbers scores 1*

M1

Peak at 3300-3500  $\text{cm}^{-1}$  (for  $\text{N-H}$ ) appears

M2

Fingerprint region different

M3

(c) Integration ratio 2:2:3

*If no link between delta value and oxygen and chlorine, then can award 1 mark for correct explanation of splitting of all 3 peaks*

M1

Peak at 3.95 triplet (integration 2)  $\text{Cl-CH}_2$  next to  $\text{CH}_2$ 

M2

Peak at 3.65 triplet (integration 2)  $\text{O-CH}_2$  next to  $\text{CH}_2$ *If no explanation of splitting, then can award 1 mark for 3 correct links between delta value and oxygen and chlorine M1*

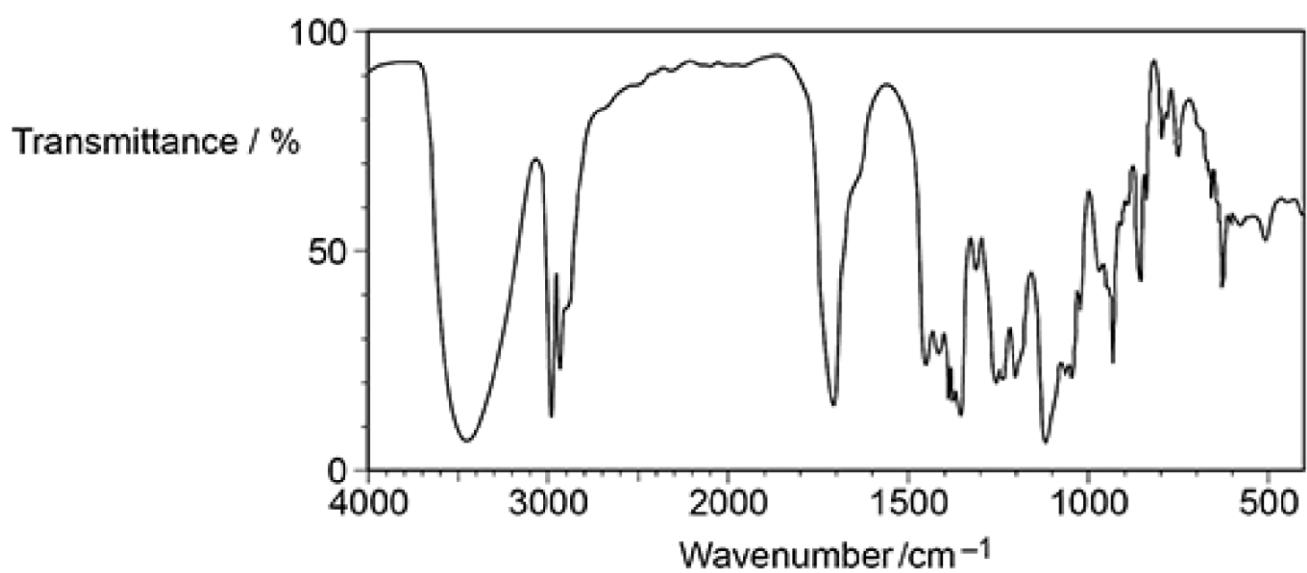
M3

Peak at 3.35 singlet (integration 3)  $\text{O-CH}_3$  no adjacent H

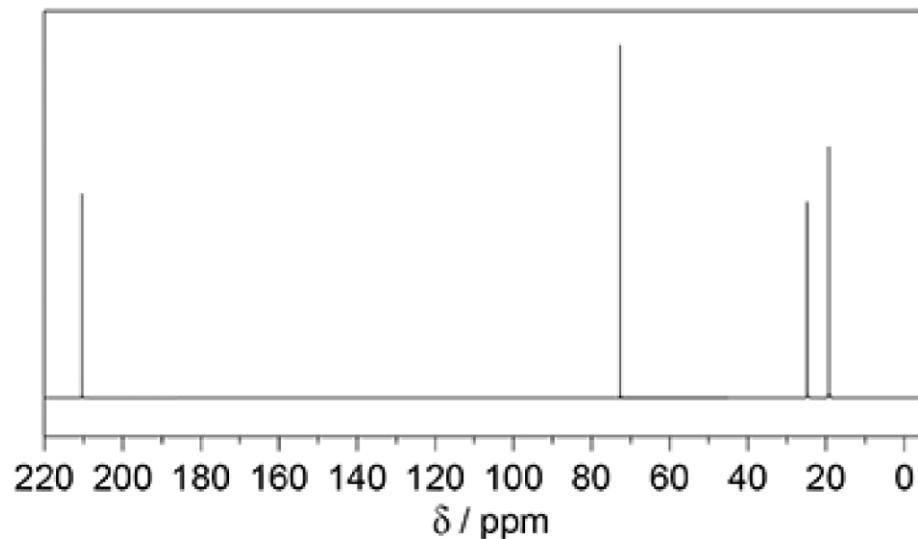
M4

Structure  $\text{CH}_3\text{-O-CH}_2\text{CH}_2\text{Cl}$ 

M5


This question is about compound **X** with the empirical formula  $C_2H_4O$

**Figure 1** shows the infrared spectrum of **X**.


**Figure 2** shows the  $^{13}C$  NMR spectrum of **X**.

The  $^1H$  NMR spectrum of **X** shows four peaks with different chemical shift values. The table below gives data for these peaks.

**Figure 1**



**Figure 2**



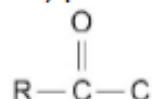
|                                                 |         |         |         |         |
|-------------------------------------------------|---------|---------|---------|---------|
| <b>Chemical shift <math>\delta</math> / ppm</b> | 3.9     | 3.7     | 2.1     | 1.2     |
| <b>Splitting pattern</b>                        | quartet | singlet | singlet | doublet |
| <b>Integration value</b>                        | 1       | 1       | 3       | 3       |

Show how information from **Figure 1**, **Figure 2** and the table can be used to deduce the structure of compound **X**.

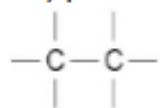
This question is marked using Levels of Response. Refer to the Mark Scheme Instructions for Examiners for guidance.

|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Level 3</b><br><b>5-6 marks</b> | All stages are covered and each stage is generally correct and virtually complete.<br><br>Answer is communicated coherently and shows a logical progression from Stage 1 to Stages 2 and 3<br><br>Covers at least 1 point for stage 1, 3 for stage 2 and 3 for stage 3.                                                                                                                                                                                                 |
| <b>Level 2</b><br><b>3-4 marks</b> | All stages are covered but stage(s) may be incomplete or may contain inaccuracies<br><br>Covers at least 1 point for stage 1 stage 2 and stage 3.<br><br>OR<br><br>two stages are covered and are generally correct and virtually complete.<br><br>Covers at least 1 point for stage 1, and 3 for stage 2 or stage 3 OR 3 for stage 2 and 3 for stage 3<br><br>Answer is communicated mainly coherently and shows a logical progression from Stage 1 to Stages 2 and 3. |
| <b>Level 1</b><br><b>1-2 marks</b> | Two stages are covered but stage(s) may be incomplete or may contain inaccuracies OR only one stage is covered but is generally correct and virtually complete.<br><br>Answer includes isolated statements but these are not presented in a logical order.                                                                                                                                                                                                              |
| <b>0 marks</b>                     | Insufficient correct chemistry to gain a mark.                                                                                                                                                                                                                                                                                                                                                                                                                          |

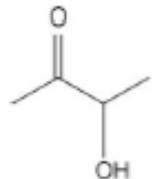
**Indicative Chemistry content****Stage 1:** infrared


1a) (broad peak) at  $3400\text{ cm}^{-1}$  (any value from 3230-3550) indicates OH in alcohols  
 1b) peak at  $1720\text{ cm}^{-1}$  (any value from 1680-1750) indicates C=O

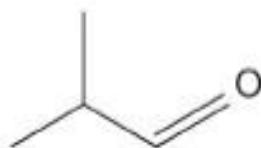
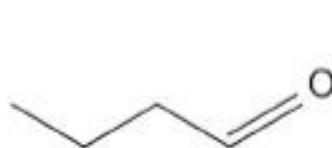
**Stage 2:**  $^1\text{H}$  nmr


2a) peak at 3.9 ppm integration 1 so 1 H-C-O AND quartet so adjacent to  $\text{CH}_3$  (stated or shown)  
 2b) peak at 3.7 ppm integration 1 so HO-C-(stated or shown)  
 2c) peak at 2.1 ppm integration 3 so  $\text{H}_3\text{C-C=O}$  AND singlet so no adjacent H (stated or shown)  
 2d) peak at 1.2 ppm integration 3 so  $\text{H}_3\text{C-}$  AND doublet so adjacent to CH (stated or shown)  
 2e) sum of integration values = 8 Hence  $\text{C}_4\text{H}_8\text{O}_2$

**Stage 3:**  $^{13}\text{C}$  nmr


3a) peak at 210 ppm C=O aldehydes or ketones  
 3b) peak at 75 ppm C-O (alcohols, ethers or esters)  
 3c) peak at 25 ppm





3d) peak at 20 ppm

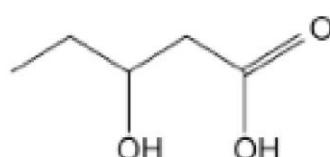


3e) structure

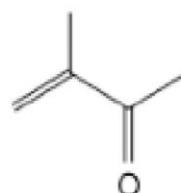


The skeletal formulas of two compounds are shown.

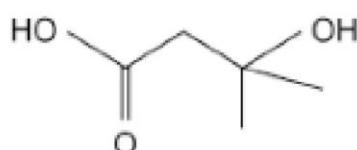



Which method would distinguish between samples of these compounds?

- A** comparing fingerprint regions of their infrared spectra
- B** obtaining molecular masses from their high resolution mass spectra
- C** warming with acidified potassium dichromate(VI) solution
- D** warming with Tollens' reagent


A

*comparing fingerprint regions of their infrared spectra*


A student plans a series of chemical tests to confirm the identities of four organic liquids.



Liquid J



Liquid K



Liquid L



Liquid M

This is the student's method.

To separate test tubes containing samples of each liquid:

**Test 1** add potassium dichromate(VI) solution and warm gently

**Test 2** add Fehling's solution and cool in iced water

**Test 3** add sodium hydrogencarbonate solution and test any gas produced with a lighted splint

**Test 4** add bromine water and shake at room temperature.

(a) Identify the missing reagent needed in **Test 1**.

---

(1)

(b) In addition to the missing reagent in **Test 1**, there is a mistake in the method for **two** of the other tests.

State the **two** mistakes.

Suggest how each of the mistakes should be corrected.

Mistake 1 \_\_\_\_\_

Suggestion \_\_\_\_\_

Mistake 2 \_\_\_\_\_

Suggestion \_\_\_\_\_

---

(2)

(c) The missing reagent is added and the mistakes are corrected.

Identify the liquid(s), **J**, **K**, **L** and **M**, that would react in each test.

State the expected observation for each reaction.

Liquid(s) that react in **Test 1** \_\_\_\_\_

Expected observation \_\_\_\_\_

\_\_\_\_\_

Liquid(s) that react in **Test 2** \_\_\_\_\_

Expected observation \_\_\_\_\_

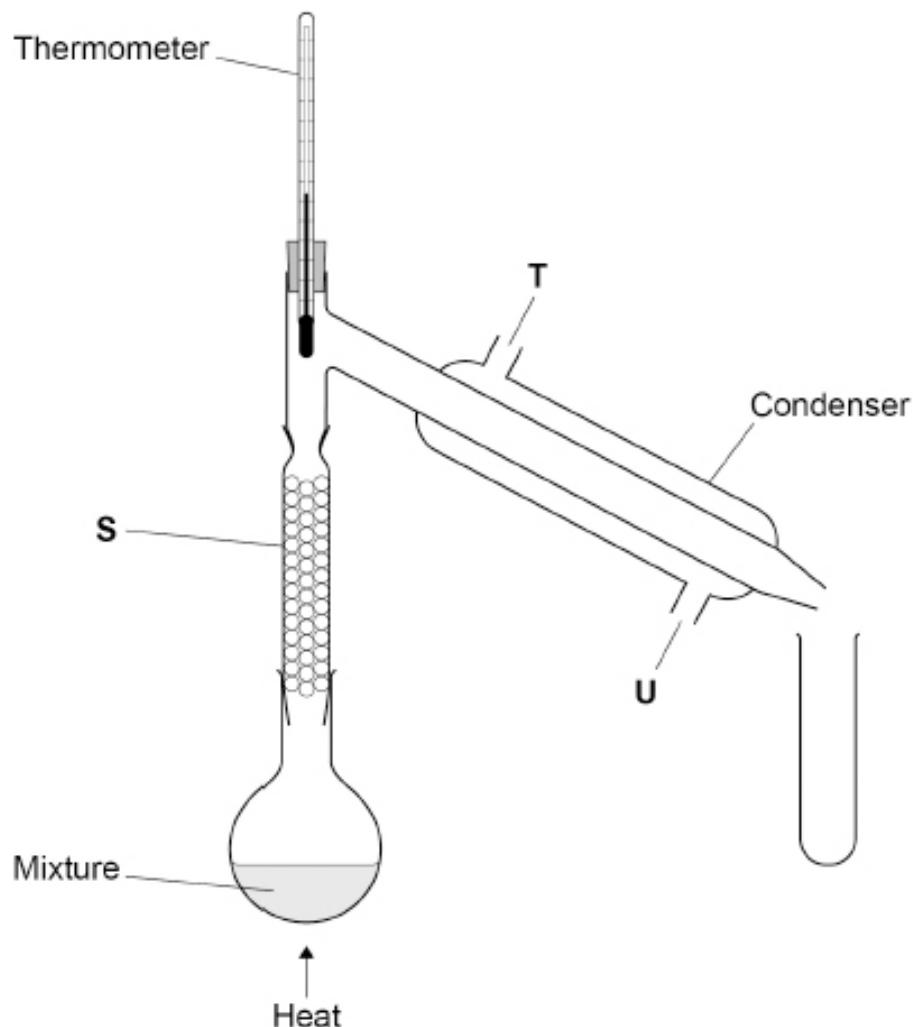
\_\_\_\_\_

Liquid(s) that react in **Test 3** \_\_\_\_\_

Expected observation \_\_\_\_\_

\_\_\_\_\_

Liquid(s) that react in **Test 4** \_\_\_\_\_


Expected observation \_\_\_\_\_

(8)

(d) The figure below shows the apparatus that is used to separate a mixture of liquids **K** and **M** using fractional distillation.

Suggest labels that should be added to positions **S**, **T** and **U** in the figure.

Explain why fractional distillation is preferred to simple distillation to separate liquids **K** and **M**.



Label **S** \_\_\_\_\_

Label **T** \_\_\_\_\_

Label **U** \_\_\_\_\_

Explanation \_\_\_\_\_

(a) Use  $H_2SO_4$ *Allow HCl /  $H_3PO_4$* *Ignore conc / dilute*

1

(b) M1 Cool test 2

warm (water bath)

*Allow heat / hot*

M2 Gas is tested with lighted splint in test 3

Bubble into limewater

*Allow no test on gas needed*

2

(c) M1 J and M

M2 Test 1 (Orange solution goes) green

M3 M

M4 Test 2 (Blue solution gives a brick) red precipitate

*Allow (Brown-red/orange/orange-red)*

M5 J and L

M6 Test 3 (Colourless gas that turns) limewater cloudy

*Allow M6 Test 3 fizz / effervescence*

M7 K

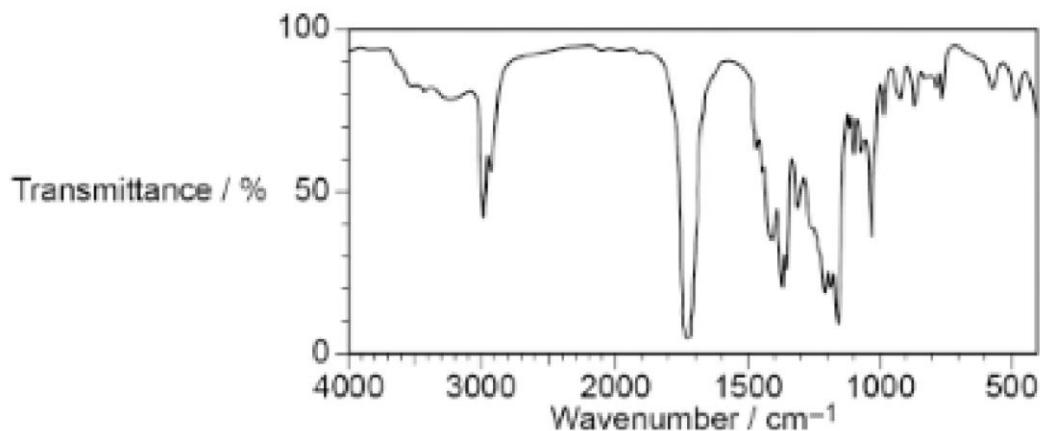
M8 Test 4 (Orange solution goes) colourless

*Allow (Brown/Brown-red/yellow/yellow-orange)**Allow decolorises bromine*

8

(d) M1 S - Fractionating column

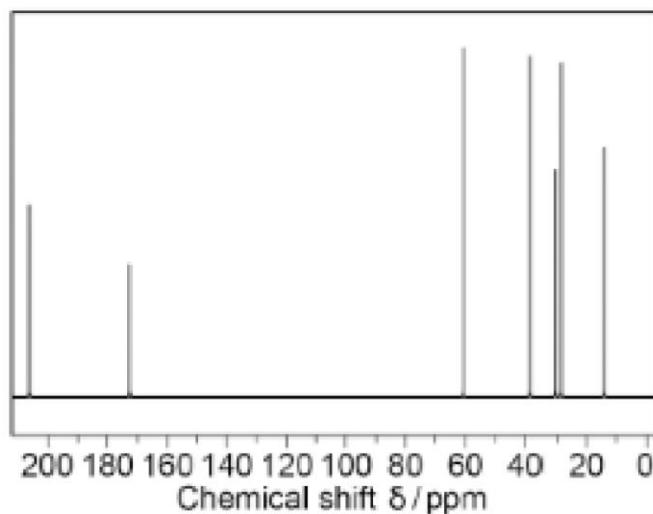
*M1 Allow beads*M2 Both T - Water out AND U - Water in


M3 Liquids K and M are likely to have similar boiling points

3

This question is about compound **Z**, with molecular formula  $C_7H_{12}O_3$

**Figure 1** shows the infrared spectrum of **Z**.


**Figure 1**



(a) Identify the bond that causes the absorption at  $1725\text{ cm}^{-1}$

**Figure 2** shows the  $^{13}\text{C}$  NMR spectrum of **Z**.

**Figure 2**



(1)

(b) How many different carbon environments are there in a molecule of **Z**?

|                                                  |   |   |   |   |
|--------------------------------------------------|---|---|---|---|
|                                                  | 5 | 6 | 7 | 8 |
| Tick <input checked="" type="checkbox"/> one box |   |   |   |   |

(1)

(c) State the type of carbon environment that causes the peak at  $\delta = 174$  ppm

Use **Table C** in the Data Booklet to help you answer this question.

---

(1)

(d) the table below shows data from the  $^1\text{H}$  NMR spectrum for compound **Z**.

|                                                 |         |         |         |         |         |
|-------------------------------------------------|---------|---------|---------|---------|---------|
| <b>Chemical shift <math>\delta</math> / ppm</b> | 4.10    | 2.60    | 2.56    | 2.19    | 1.26    |
| <b>Integration ratio</b>                        | 2       | 2       | 2       | 3       | 3       |
| <b>Splitting pattern</b>                        | quartet | triplet | triplet | singlet | triplet |

Explain what can be deduced from the splitting patterns and chemical shift values for the peaks at  $\delta = 4.10$  ppm and at  $\delta = 1.26$  ppm

Deduce the part of the structure of **Z** that causes the peaks at  $\delta = 4.10$  ppm and  $\delta = 1.26$  ppm

Use **Table B** in the Data Booklet to help you answer this question.

Peak at  $\delta = 4.10$  ppm \_\_\_\_\_

---



---

Peak at  $\delta = 1.26$  ppm \_\_\_\_\_

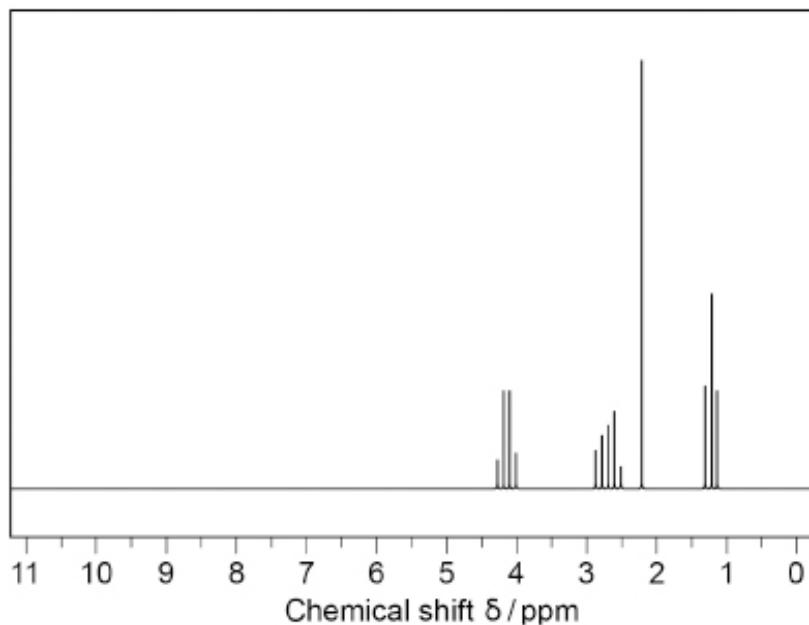
---



---

Part of structure

(5)


(e) Deduce the part of the structure of **Z** that causes the peak at  $\delta = 2.19$  ppm

Part of structure

(1)

**Figure 3** shows the  $^1\text{H}$  NMR spectrum of compound **Z**.

**Figure 3**



(f) Suggest why it would be difficult to determine the structure of **Z** using the spectrum in **Figure 3**, without the information in the table in part (d).

---

---

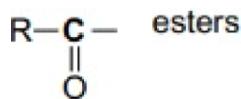
---

---

(1)

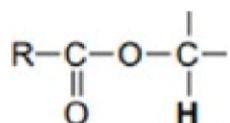
(g) Deduce the structure of **Z**.

(1)


(a) C=O

1

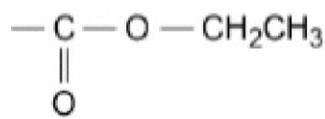
(b) Tick in the box for 7 ONLY


1

(c)

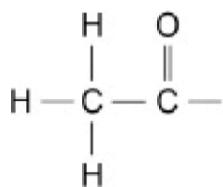
*Ignore acids*

1


(d) M1 (Quartet) because neighbouring C has 3H

M2 (At  $\delta = 4.1$  ppm) because connected to single bonded O of ester or

M3 (Triplet) because neighbouring C has 2H


M4 (At  $\delta = 1.26$  ppm) because  $\text{R}_2\text{CH}_2$  or  $\text{RCH}_3$ 

M5

*Ignore use of integration*

5

(e)



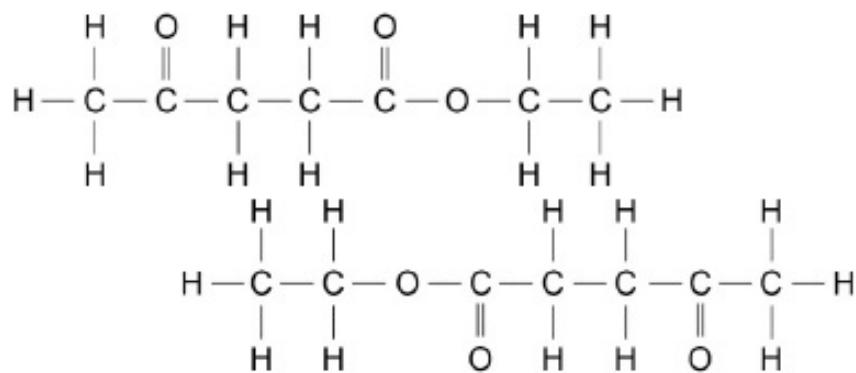
1

(f) Cannot deduce splitting patterns of peaks (at about  $\delta = 2.60$ )

Or

### No integration values

*Allow*


Peaks at  $\delta = 2.60$  and  $\delta = 2.56$  ppm overlap

*OR*

spectrum at  $\delta = 2.60$  is second order

1

(g)



1