

Compounds **V**, **W**, **X** and **Y** are isomers with the molecular formula $C_5H_{10}O_2$

Isomers **V** and **W** are carboxylic acids with formulas that can be written as C_4H_9COOH

- (a) Give an equation for the reaction of C_4H_9COOH with sodium hydrogencarbonate.

(1)

- (b) Isomer **V** has an asymmetric carbon atom.

Deduce the structure of **V**.

(1)

- (c) Isomer **W** has four peaks in its 1H NMR spectrum.

Deduce the structure of **W**.

Deduce the integration ratio for the four peaks in the 1H NMR spectrum of **W**.

Structure

Integration ratio _____

(2)

- (d) Isomer **X** has three singlets with integration ratio 1:3:6 in its 1H NMR spectrum.

Deduce the structure of **X**.

Explain why the peaks in the 1H NMR spectrum are singlets.

Structure

Explanation _____

(2)

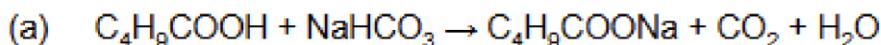
- (e) The table below shows information about the peaks in the ^1H NMR spectrum of isomer Y.

Chemical shift δ / ppm	Integration ratio	Splitting pattern
3.65	2	singlet
1.19	3	singlet

Draw the parts of the structure of Y that can be deduced from each of these peaks.

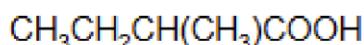
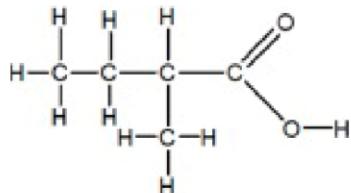
Deduce the structure of Y.

State how many peaks are in the ^{13}C NMR spectrum of Y.

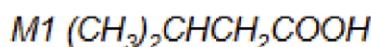
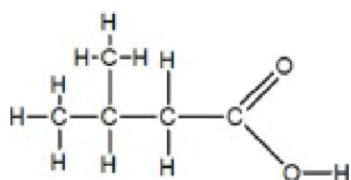

Part of structure from peak at $\delta = 3.65$ ppm

Part of structure from peak at $\delta = 1.19$ ppm

Structure of Y

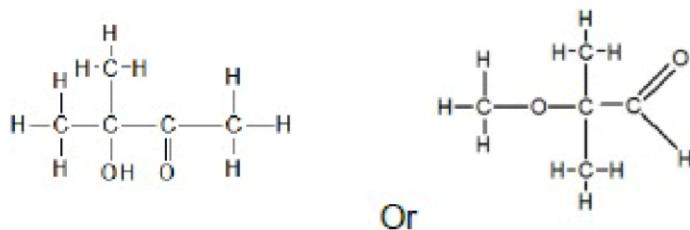


Number of peaks in ^{13}C NMR spectrum of Y _____

(6)

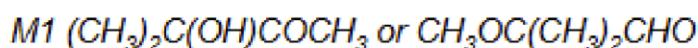
1

(b)


1

(c) **M1**

M2 6:1:2:1 (Any order)


M2 Allow ECF for a 5 carbon carboxylic acid

2

(d) **M1**

M2

Adjacent C has no (non-equivalent) H attached (so no splitting/spin-spin coupling takes place)

2

(e)

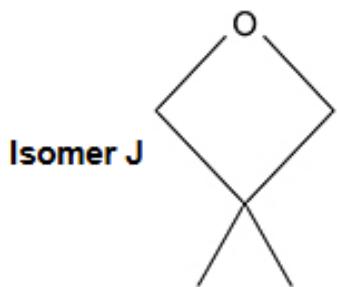
	Scores M1 and M2	Allow M1 for	$\text{R} - \text{O} - \text{C} - \text{H}$
	Scores M3 and M4	Allow M3 for	RCH_3
	Scores M5		<p>This structure also scores M5</p>
^{13}C peaks	= 3	M6	Allow ECF from their M5 of $\text{C}_5\text{H}_{10}\text{O}_2$

This question is about isomers with the molecular formula $C_5H_{10}O$

- (a) Draw the skeletal formula of a branched chain aldehyde with molecular formula $C_5H_{10}O$ that is optically active.

(1)

- (b) Describe how you distinguish between separate samples of the two enantiomers of the branched chain aldehyde $C_5H_{10}O$


(2)

- (c) Draw the *E* and *Z* forms of a structural isomer of $C_5H_{10}O$ that shows **both** optical and geometric isomerism.

<i>E</i> isomer	<i>Z</i> isomer

(2)

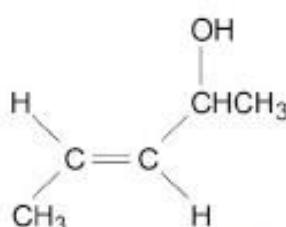
- (d) Isomer J is cyclic and has an ether functional group (C—O—C)
Isomer J has only three peaks in its ^{13}C NMR spectrum.

Draw **two** other cyclic isomers of $\text{C}_5\text{H}_{10}\text{O}$ that have an ether functional group and only three peaks in their ^{13}C NMR spectra.

(2)

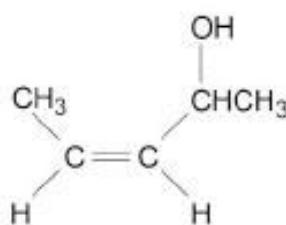
(a)

1


(b) Use Plane polarised light

M1

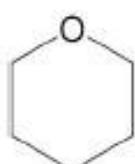
rotates (the plane of) in opposite directions


M2

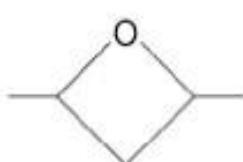
(c)

Must be E isomer

M1



Must be Z isomer


Allow 1 mark out of 2 for 2 correct structures but shown in the wrong boxes

M2

(d)

M1

M2