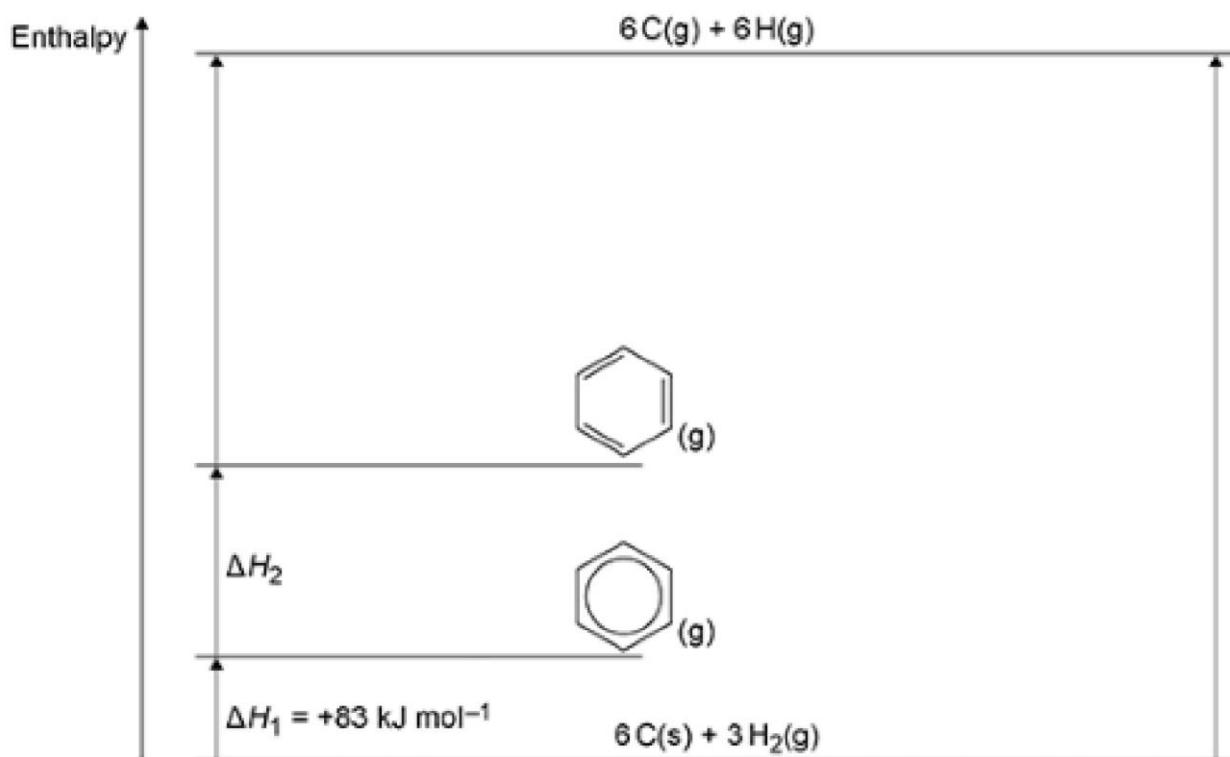


Kekulé suggested this structure for benzene.



Benzene is now represented by this structure.

Figure 1 shows the relative stability of compared to .

Figure 1

(a) Use **Figure 1** and the data shown in the table below to calculate ΔH_2

	$\Delta H / \text{kJ mol}^{-1}$
Enthalpy of atomisation for carbon	+715
Enthalpy of atomisation for hydrogen	+218
Bond enthalpy (C–C)	+348
Bond enthalpy (C=C)	+612
Bond enthalpy (C–H)	+412

ΔH_2 _____ kJ mol⁻¹

(3)

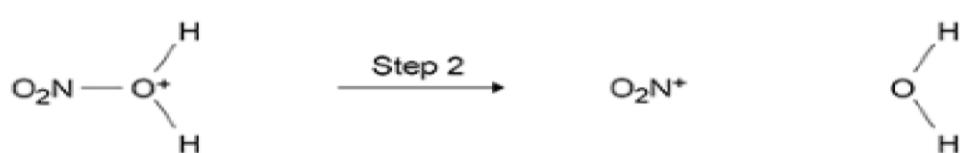
(b) Explain, in terms of structure and bonding, why

is more thermodynamically stable than

(1)

(c) A mixture of concentrated nitric acid and concentrated sulfuric acid reacts with benzene.

Figure 2 shows the incomplete mechanism for this reaction.


Name the mechanism.

Complete the mechanism in **Figure 2** by adding

- any lone pairs of electrons involved in each step
- **two** curly arrows in step 1
- a curly arrow in step 2
- a curly arrow in step 3
- a curly arrow in step 4.

Name of mechanism _____

Figure 2

(5)

(a) $(3 \times 612) + (3 \times 348) + (6 \times 412) = 5352$
For LHS

M1

$(6 \times 715) + (6 \times 218) = 5598$
For RHS

M2

$\Delta H_2 = M2 - M1 - 83 = +163 \text{ kJ mol}^{-1}$

M3

(b) (π) electrons delocalised

1

(c) M1 Electrophilic substitution

1

M2 for a lone pair and two curly arrows

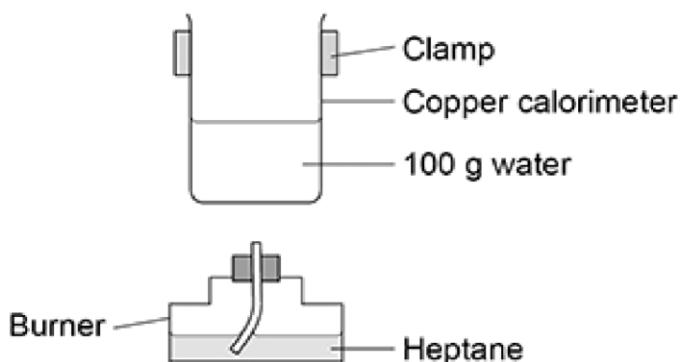
1

M3 for a curly arrow from the bond to the O

1

M4 for a curly arrow from inside the hexagon to the N or + on the N

1


M5 curly arrow from the bond back into the hexagon

1

A student does an experiment to determine a value for the enthalpy of combustion of heptane.

The figure below shows some of the apparatus used.

(a) Design a table to record all the readings necessary to determine an experimental value for the enthalpy of combustion for heptane in this experiment.

(2)

(b) The student considered using a glass beaker on a tripod and gauze instead of the clamped copper calorimeter.

Suggest **two** disadvantages of using a glass beaker on a tripod and gauze.

Disadvantage 1 _____

Disadvantage 2 _____

(2)

(c) Suggest **two** reasons why the value of enthalpy of combustion from this experiment is less exothermic than a data book value.

Reason 1 _____

Reason 2 _____

(d) Suggest **one** addition to this apparatus that would improve the accuracy of the enthalpy value obtained.

(1)

(a)

	Temp/ °C		Mass /g
Initial		Burner before	
Final		Burner after	
(ΔT)		(Mass heptane burned)	

*M1 for Temperature data including units**M2 for Burner mass data including units If either unit missing MAX 1*

M1

M2

(b) Any two from:

Glass is a poorer conductor than copper

M1

Tripod and gauze would reduce heat transfer

Tripod and gauze would have a fixed height above the flame

Heat capacity of metal is less than glass or vice versa

M2

(c) Heat loss to surroundings or to copper/calorimeter

M1

Incomplete combustion

M2

(d) Use a wind shield (to reduce heat loss)

*Allow use a lid**Insulate the sides of the calorimeter*

A value for enthalpy of solution can be determined in two ways:

- from a cycle, using lattice enthalpy and enthalpies of hydration
- from the results of a calorimetry experiment.

(a) Define the term enthalpy of lattice dissociation.

(2)

(b) The enthalpy of solution for ammonium nitrate is the enthalpy change for the reaction shown.

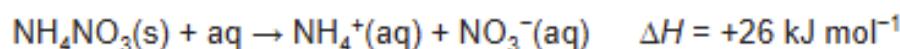


Table 1

	$\text{NH}_4^+(\text{g})$	$\text{NO}_3^-(\text{g})$
Enthalpy of hydration $\Delta_{\text{hyd}}H / \text{kJ mol}^{-1}$	-307	-314

Draw a suitably labelled cycle and use it, with data from Table 1, to calculate the enthalpy of lattice dissociation for ammonium nitrate.

Enthalpy of lattice dissociation _____ kJ mol^{-1}

(3)

(c) A student does an experiment to determine a value for the enthalpy of solution for ammonium nitrate.

The student uses this method.

- Measure 25.0 cm³ of distilled water in a measuring cylinder.
- Pour the water into a beaker.
- Record the temperature of the water in the beaker.
- Add 4.00 g of solid NH₄NO₃ to the water in the beaker.
- Stir the solution and record the lowest temperature reached.

Table 2 shows the student's results.

Table 2

Initial temperature / °C	20.2
Lowest temperature / °C	12.2

Calculate the enthalpy of solution, in kJ mol⁻¹, for ammonium nitrate in this experiment.

Assume that the specific heat capacity of the solution, $c = 4.18 \text{ J K}^{-1} \text{ g}^{-1}$

Assume that the density of the solution = 1.00 g cm⁻³

Enthalpy of solution _____ kJ mol⁻¹

(3)

(d) The uncertainty in each of the temperature readings from the thermometer used in this experiment is $\pm 0.1^\circ\text{C}$

Calculate the percentage uncertainty in the temperature change in this experiment.

Percentage uncertainty _____

(1)

(e) Suggest a change to the student's method, using the same apparatus, that would reduce the percentage uncertainty in the temperature change.

Give a reason for your answer.

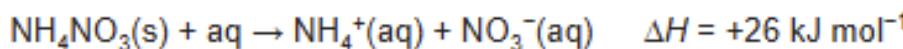
Change _____

Reason _____

(2)

(f) Another student obtained a value of $+15 \text{ kJ mol}^{-1}$ using the same method.

Suggest the main reason for the difference between this experimental value for the enthalpy of solution and the correct value of $+26 \text{ kJ mol}^{-1}$


(1)

(g) Table 3 shows some entropy data at 298 K

Table 3

	Entropy $S / \text{J K}^{-1} \text{ mol}^{-1}$
$\text{NH}_4\text{NO}_3(\text{s})$	151
$\text{NH}_4^+(\text{aq})$	113
$\text{NO}_3^-(\text{aq})$	146

Calculate a value for the Gibbs free-energy change (ΔG), at 298 K, for the reaction when ammonium nitrate dissolves in water.

Use data from Table 3 and the value of ΔH from the equation.

Assume for the solvent, water, that the entropy change, $\Delta S = 0$

Explain what the calculated value of ΔG indicates about the feasibility of this reaction at 298 K

ΔG _____ kJ mol⁻¹

Explanation _____

(4)

(h) Ammonium nitrate decomposes as shown.

The entropy change (ΔS) for this reaction is +144 J K⁻¹ mol⁻¹

Calculate the temperature at which this reaction becomes feasible.

Temperature _____ K

(2)

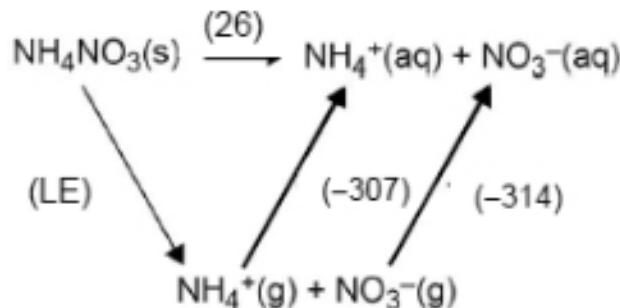
(a) The enthalpy change / ΔH when one mole of a (solid) ionic compound

Ignore standard states / conditions

Allow heat change at constant pressure when...

Ignore heat change (alone) / energy change

1


dissociates (fully) into gaseous ions

M2 Allow suitable equation with state symbols for ions

Not one mole of gaseous ions

1

(b)

Allow + water or +aq

M1 = cycle (3 'corners' with formulae and state symbols and suitable arrows)

Allow equivalent Born-Haber style energy cycle

Not ecf to M2 and M3 from incorrect cycle

1

$$\text{LE} = 26 + 307 + 314$$

$$\text{M2} = \text{working e.g. } 26 = \text{LE} - 307 - 314$$

$$= (+)647$$

1

M3 = answer (+)647 gets 3/3 if M1 given or 2/3 if not

-647 = 2/3 if M1 given or 1/3 if not

+595 / -595 = 2/3 if M1 given or 1/3 if not

-621/+621 = 1/3 if M1 given

Not ecf for M3 from incorrect expression in M2

1

(c) $(q = mc\Delta T =) 25.0 \times 4.18 \times (20.2 - 12.2)$ OR $25.0 \times 4.18 \times 8$
 $(= 836 \text{ (J) or } 0.836 \text{ (kJ)})$

Not if m = 29

Ignore sign of a

1

$4.00 \text{ g NH}_4\text{NO}_3 = 4.00/80$ OR 0.0500 mol

1

$\Delta H^\ominus_{\text{soln}} = 836/0.05 = 16720 = (+)16.7(2) \text{ kJ mol}^{-1}$

Allow ecf from M1 and/or from M2

$-16.7(2) = 2/3$

$+19.4 = 2/3 \text{ (using } m = 29 \text{ in M1)}$

$-19.4 = 1/3$

$+2.68 = 2/3$

$-2.68 = 1/3$

$+587 \text{ or } +588 = 2/3$

$-587 \text{ or } -588 = 1/3$

Allow 2 sig figs or more

1

(d) $(2 \times 0.1/8) \times 100 = 2.5\%$

Allow ecf from ΔT in (c)

1

(e) use a larger mass/amount of NH_4NO_3 / solid

Marking points are independent

Allow smaller volume of water / less water

Allow use more NH_4NO_3

Not larger volume of water

Ignore higher concentration (of NH_4NO_3)

Ignore any references to changing apparatus e.g. insulation

1

so temperature change/decrease is greater

OR final temperature is lower

Allow temperature increase is greater

Not final temperature is higher

1

(f) heat gain (from the surroundings) / incomplete dissolving

Allow incomplete reaction

Allow thermal energy gain

Not heat loss

Ignore energy gain

Ignore references to mistakes in method

1

(g) $\Delta S = (113 + 146) - 151 = +108 \text{ (J K}^{-1} \text{ mol}^{-1}\text{)}$

1

$\Delta G = \Delta H - T\Delta S \text{ OR } 26 - (298 \times 108 \times 10^{-3})$

Allow ecf 26 - (298 × M1 × 10⁻³)

Allow ecf 26 - (298 × M1)

Allow M2 for 26000 - (298 × 108)

Allow M2 for 26 - (298 × 108)

1

$\Delta G = -6.184 / -6.18 / -6.2$

-32158 = M1 and M2

-32.2 = M1 and M2

-6184 = M1 and M2

(+)58.2 = M2 and M3 (ecf if -108 for M1)

1

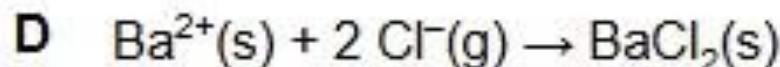
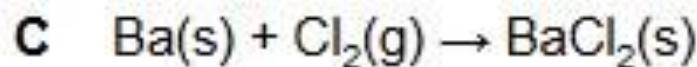
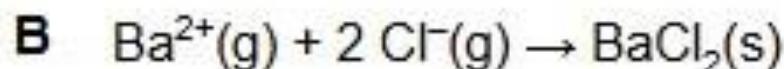
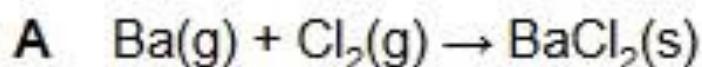
negative value for ΔG indicates reaction is feasible/spontaneous*Allow positive value for ΔG indicates reaction is NOT feasible/spontaneous**Allow < 0 or > 0 as appropriate**M4 is standalone*

1

(h) Converting ΔH into J OR ΔS into kJ

1

$(T = \Delta H / \Delta S = 123 / 144 \times 10^{-3} \text{ OR } 123000 / 144) = 854(.1666666) \text{ (K)}$





0.854 (K) = 1/2

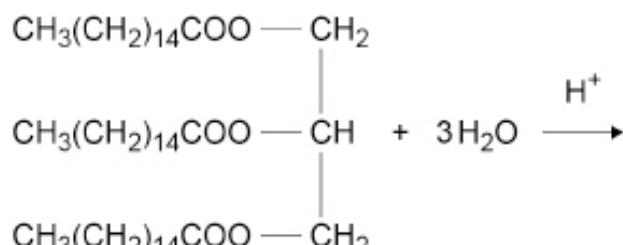
0.00117 (K) = 1/2 (calculation upside down)

2SF minimum

1

Which reaction has a standard enthalpy change equal to the standard enthalpy of formation for barium chloride?

C



This question is about biofuels.

Palmitic acid, $\text{CH}_3(\text{CH}_2)_{14}\text{COOH}$, can be made by hydrolysis of the triester in palm oil under acidic conditions.

Palmitic acid can be used as a biofuel.

(a) Complete the equation for the hydrolysis of the triester in palm oil under acidic conditions.

(2)

(b) Palmitic acid burns in air.

In a calorimetry experiment, combustion of 387 mg of palmitic acid increases the temperature of 0.150 kg of water from 23.9 °C to 37.5 °C

Calculate a value, in kJ mol^{-1} , for the enthalpy of combustion of palmitic acid in this experiment.

Give your answer to the appropriate number of significant figures.

The specific heat capacity of water is $4.18 \text{ J K}^{-1} \text{ g}^{-1}$

Enthalpy of combustion _____ kJ mol^{-1}

(5)

(c) State how the value calculated in part (b) is likely to differ from data book values.

Give one reason, other than heat loss, for this difference.

Difference _____

Reason _____

(2)

(d) A sample of a different biofuel, made from sewage sludge, is found to contain 37.08% carbon, 5.15% hydrogen and 24.72% oxygen by mass.

The rest of the sample is sulfur.

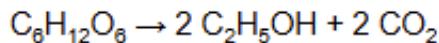
Calculate the empirical formula of this biofuel.

Empirical formula _____

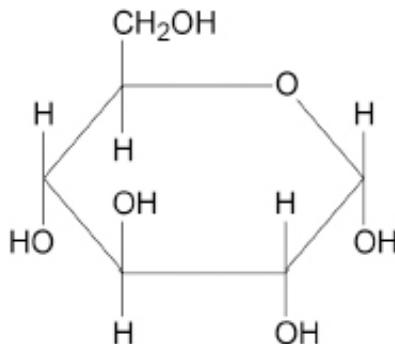
(3)

(e) Complete combustion of the biofuel made from sewage sludge produces the greenhouse gas carbon dioxide.

Suggest **one** other possible environmental problem with the complete combustion of this biofuel.


State the formula of the pollutant responsible for this problem.

Environmental problem _____


Formula _____

(2)

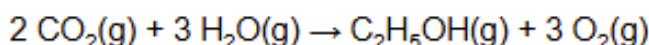
(f) Ethanol is a biofuel that can be produced by the fermentation of glucose.

Glucose has the structural formula shown.

Table 1 shows some mean bond enthalpy values.

Table 1

	C-H	C-C	C-O	C=O	O-H
Mean bond enthalpy / kJ mol⁻¹	412	348	360	805	463


Use the equation and the data in **Table 1** to calculate an approximate value of ΔH for the fermentation of glucose. For this calculation you should assume that all the substances are in the gaseous state.

ΔH _____ kJ mol⁻¹

(3)

(g) The carbon dioxide produced from fermentation can be reacted with steam to make more ethanol.

The equation for this reaction is

Table 2 shows some standard enthalpies of formation.

Table 2

	CO ₂ (g)	O ₂ (g)	C ₂ H ₅ OH(g)	H ₂ O(g)
ΔfH ^θ / kJ mol ⁻¹	-394	0	-235	-242

Use the data in **Table 2** to calculate a standard enthalpy change value for this reaction.

Standard enthalpy change _____ kJ mol⁻¹

(2)

(a) M1 $3 \text{CH}_3(\text{CH}_2)_{14}\text{COOH}$ M2 $\text{CH}_2(\text{OH})\text{CH}(\text{OH})\text{CH}_2\text{OH}$ *Penalise additional product(s) once*

2

(b) M1 $M_r = 256$

M2 $n(\text{CH}_3(\text{CH}_2)_{14}\text{COOH}) = \frac{0.387}{M1} = 1.51 \times 10^{-3}$

M3 $Q = 150 \times 4.18 \times 13.6 = 8527.2 \text{ (J)}$

M4 $\Delta H = \frac{M3}{M2} \div 1000 = (-)5641$

M5 $\Delta H = -5640 \text{ kJ mol}^{-1}$

Must be negative and 3sf (allow ecf on M4)

5

(c) M1 Less exothermic

Allow Less negative (value) / Lower

M2 Incomplete combustion

Allow products of incomplete combustion

2

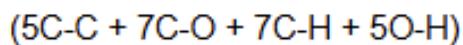
		C 37.08	H 5.15	O 24.72	S M1 = 33.05
M2	$\div A_r$	= 3.09	= 5.15	= 1.55	= 1.030
	$\div \text{smallest}$	= 3	= 5	= 1.50	= 1
M3	Empirical formula = $\text{C}_6\text{H}_{10}\text{O}_3\text{S}_2$				

M1 % S = 33.05

*M2 Calculation of moles**M3 Ratio of moles AND Empirical Formula**If no Sulfur used ecf for M2 and M3*

M2 3.09 : 5.15 : 1.55

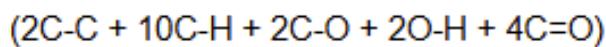
M3 $\text{C}_6\text{H}_{10}\text{O}_3$


3

(e) M1 Acid rain

*Allow smog*M2 SO_2 *Allow NO_x*

2


(f) M1 Bonds broken = 9459 kJ mol⁻¹

Allow if they cancel the common bonds

M1 4233

M2 Bonds formed = 9682 kJ mol⁻¹

M2 4456

M3 ΔH = M1 - M2 = -223 kJ mol⁻¹

M3 can be awarded as ecf from their M1 and M2

3

(g) M1 ΔH = -235 - (2 × -394) - (3 × -242)

M2 = +1279 kJ mol⁻¹

If no sign assume positive

2
